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Calculus of Variations



The first order variational problem

Take a fibered manifold
𝑌 𝜋−→ 𝑋,

with coordinates
(𝑥𝜇, 𝑦𝑖) 𝜋−→ (𝑥𝜇).

We want to find sections 𝜙 ∶ 𝑋 → 𝑌 that extremize certain functional (the
action)

𝑆[𝜙] ∶= ∫
𝑋

ℒ(𝑥𝜇, 𝜙𝑖, 𝜕𝜙𝑖

𝜕𝑥𝜇 ),

where ℒ (the Lagrangian density) is an 𝑛-form on 𝑋, with dim𝑋 = 𝑛 .
For first order field theories, we can interpret

Lagrangian dentisy ∼ ℒ ∶ 𝐽1𝜋 →
𝑛

⋀ 𝑋;

Action ∼ 𝑆[𝜙] = ∫
𝑋

ℒ ∘ 𝑗1𝜙.
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Euler-Lagrange equations

Stationary sections will satisfy

d
d𝑡 ∣

𝑡=0
𝑆[𝜙𝑡] = 0,

for every possible variation 𝜙𝑡, 𝜙0 = 𝜙. The Euler-Lagrange equations for 𝜙
are:

Locally, 𝜕𝐿
𝜕𝑦𝑖 = d

d𝑥𝜇 ( 𝜕𝐿
𝜕𝑧𝑖𝜇

) ,

Intrinsically, (𝑗1𝜙)∗𝜄𝜉Ωℒ = 0, ∀𝜉 ∈ 𝔛(𝐽1𝑌 ),
where Ωℒ is the multisymplectic form of the theory, a closed (𝑛 + 1)-form

Ωℒ = 𝑑 ( 𝜕𝐿
𝜕𝑧𝑖𝜇

) ∧ 𝑑𝑦𝑖 ∧ 𝑑𝑛−1𝑥𝜇 − 𝑑 ( 𝜕𝐿
𝜕𝑧𝑖𝜇

𝑧𝑖
𝜇 − 𝐿) ∧ 𝑑𝑛𝑥.
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The importance of multisymplectic geometry

Symplectic Geometry ∼ Classical Mechanics

Multisymplectic Geometry ∼ Classical Field
Theories
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Symplectic Geometry



Definition (Symplectic manifold)
A symplectic manifold is a pair (𝑀, 𝜔), where 𝑀 is an manifold, and
𝜔 ∈ Ω2(𝑀) is a closed, non-degenerate, 2-form.

Definition
For a subspace 𝑖 ∶ 𝑊 ↪ 𝑇𝑥𝑀, define the symplectic orthogonal as

𝑊 ⟂ ∶= {𝑣 ∈ 𝑇𝑞𝑀, 𝜔(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑊} = ker 𝑖∗ ∘ ♭.

Important submanifolds

⎧{{
⎨{{⎩

Lagrangian, 𝑇𝑥𝐿 = (𝑇𝑥𝐿)⟂

Coisotropic, (𝑇𝑥𝑁)⟂ ⊆ 𝑇𝑥𝑁
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Dynamics = Lagrangian submanifolds (Weinstein’s creed)

(𝑀, 𝜔) symplectic −→ (𝑇 𝑀, 𝜔̃) symplectic,
𝜔̃ = ♭∗

𝜔𝜔𝑀 ; ♭𝜔 ∶ 𝑇 𝑀 → 𝑇 ∗𝑀 (contraction)

Definition

• Hamiltonian vector field: 𝑋𝐻 ∈ 𝔛(𝑀), (𝐻 ∈ 𝐶∞(𝑀)) such that

𝜄𝑋𝐻
𝜔 = 𝑑𝐻.

• Locally Hamiltonian vector field: 𝑋 ∈ 𝔛(𝑀) such that

𝑑𝜄𝑋𝜔 = 0.

Theorem
A vector field 𝑋 ∶ 𝑀 → 𝑇 𝑀 is locally Hamiltonian if and only if it defines a
Lagrangian submanifold of (𝑇 𝑀, 𝜔̃).
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Coisotropic reduction

Given a coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 , the distribution

𝑥 ↦ (𝑇𝑥𝑁)⟂

is regular and involutive. Therefore, it arises from a maximal foliation ℱ.
Then,

Theorem
If 𝑁/ℱ admits a smooth manifold structure such that 𝜋 ∶ 𝑁 → 𝑁/ℱ
defines a submersion (𝑁/ℱ is a quotient manifold), then there is an
unique symplectic form 𝜔𝑁 on 𝑁/ℱ such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.

Furthermore, if 𝐿 is a Lagrangian submanifold in 𝑀 that has clean
intersection with 𝑁 , 𝜋(𝐿 ∩ 𝑁) is a Lagrangian submanifold in (𝑁/ℱ, 𝜔𝑁)

8/23



Coisotropic reduction

Given a coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 , the distribution

𝑥 ↦ (𝑇𝑥𝑁)⟂

is regular and involutive. Therefore, it arises from a maximal foliation ℱ.
Then,

Theorem
If 𝑁/ℱ admits a smooth manifold structure such that 𝜋 ∶ 𝑁 → 𝑁/ℱ
defines a submersion (𝑁/ℱ is a quotient manifold), then there is an
unique symplectic form 𝜔𝑁 on 𝑁/ℱ such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.

Furthermore, if 𝐿 is a Lagrangian submanifold in 𝑀 that has clean
intersection with 𝑁 , 𝜋(𝐿 ∩ 𝑁) is a Lagrangian submanifold in (𝑁/ℱ, 𝜔𝑁)

8/23



Poisson brackets

Definition
(𝑀, 𝜔) symplectic manifold, 𝑓, 𝑔 ∈ 𝐶∞(𝑀).

Poisson bracket: {𝑓, 𝑔} = 𝜔(𝑋𝑓 , 𝑋𝑔).

• Jacobi indentity
{𝑓, {𝑔, ℎ}} + cycl. = 0,

• Leibniz indentity
{𝑓𝑔, ℎ} = 𝑓{𝑔, ℎ} + 𝑔{𝑓, ℎ}.

Theorem
A submanifold 𝑁 ↪ 𝑀 is coisotropic if and only if

𝐼𝑁 = {𝑓 ∈ 𝐶∞(𝑀) ∶ 𝑑𝑓 = 0 on 𝑁}

defines a Poisson subalgebra of (𝐶∞, {⋅, ⋅}).
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Multisymplectic Manifolds



Multisymplectic Manifolds

Definition
A multisymplectic manifold of order 𝑘 is a pair (𝑀, 𝜔), where 𝑀 is a
smooth manifold, and 𝜔 is a closed (𝑘 + 1)−form.

No non-degeneracy required

Definition
For 𝑊 ⊆ 𝑇𝑥𝑀, and 1 ≤ 𝑗 ≤ 𝑘 define the multisymplectic orthogonal as

𝑊 ⟂,𝑗 ∶= {𝑣 ∈ 𝑇𝑥𝑀 ∶ 𝜄𝑣∧𝑤1∧⋯𝑤𝑗
𝜔 = 0, ∀𝑤1, … , 𝑤𝑗 ∈ 𝑊}.

Important submanifolds

⎧{{
⎨{{⎩

𝑗 − Lagrangian, 𝑇𝑥𝐿 + ker ♭1 = (𝑇𝑥𝐿)⟂,𝑗

𝑗 − Coisotropic, (𝑇𝑥𝑁)⟂ ⊆ 𝑇𝑥𝑁 + ker ♭1
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Hamiltonian multivector fields and
forms



Dynamics = Lagrangian submanifolds

(𝑀, 𝜔) multisymplectic −→ (⋁
𝑞

𝑀, Ω̃𝑞) multisymplectic

Ω̃𝑞 = ♭∗
𝑞Ω𝑘+1−𝑞

𝑀 , ♭𝑞 ∶ ⋁
𝑞

𝑀 →
𝑘+1−𝑞

⋀ 𝑀 (contraction)

Definition

• Locally Hamiltonian multivector field: 𝑈 ∶ 𝑀 → ⋁𝑞 𝑀 such that

𝑑𝜄𝑈𝜔 = 0.

Theorem
A multivector field 𝑈 ∶ 𝑀 → ⋁𝑞 𝑀 is locally Hamiltonian if and only if it

defines a (𝑘 + 1 − 𝑞)−Lagrangian submanifold in (⋁𝑞 𝑀, Ω̃𝑞)
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Coisotropic submanifolds



Coisotropic reduction

Given a 𝑘-coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀, we have

Proposition
The distribution 𝑥 ↦ (𝑇𝑥𝑁)⟂,𝑘 ∩ 𝑇𝑥𝑁 ⊆ 𝑇𝑥𝑁 is involutive.

Thus, when it is regular, it arises from a foliation ℱ.

Theorem
When 𝑁/ℱ admits a smooth manifold structure such that the projection
𝜋 ∶ 𝑁 → 𝑁/ℱ defines a submersion (𝑁/ℱ is a quotient manifold), there
exists an unique multisymplectic form 𝜔𝑁 on 𝑁/ℱ such that

𝜋∗𝜔𝑁 = 𝑖∗𝜔.

What about projection of Lagrangian submanifolds?
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Multisymplectic manifolds of type (𝑘, 𝑟)

Definition
Let 𝐿 be a manifold and ℰ be a regular distribution on 𝐿. Define:

𝑘
⋀
𝑟

𝐿 = {𝛼 ∈
𝑘

⋀ 𝐿 ∶ 𝜄𝑒1∧⋯∧𝑒𝑟
𝛼 = 0, ∀𝑒1, … , 𝑒𝑟 ∈ ℰ}.

(
𝑘

⋀
𝑟

𝐿, Ω𝐿) is a multisymplectic manifold

Definition
A multisymplectic manifold of type (𝑘, 𝑟) (𝑀, 𝜔, 𝑊, ℰ) is a multisymplectic
manifold (𝑀, 𝜔) that is locally multisymplectomorphic to ⋀𝑘

𝑟 𝐿.

𝑊 ∼ vertical distribution
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An example of coisotropic reduction

Let 𝐿 be a smooth manifold, 𝑖 ∶ 𝑄 ⊆ 𝐿 be a submanifold, and ℰ be a regular
distribution. Then,

Proposition

𝑁 ∶= ⋀𝑘
𝑟 𝐿∣𝑄 defines a 𝑘-coisotropic submanifold.

Theorem

For 𝑁 = ⋀𝑘
𝑟 𝐿∣𝑄, where 𝑇 𝑄 ∩ ℰ has constant rank,

𝑁/ℱ ≅
𝑘

⋀
𝑟

𝑄.
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Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms,
since horizontal 𝑘-Lagrangian submanifolds are locally the image of closed
forms.

⎧{{
⎨{{⎩

𝑁 = ⋀𝑘
𝑟 𝐿∣𝑄,

𝛼 ∶ 𝐿 → ⋀𝑘
𝑟 𝐿.

⎧{{
⎨{{⎩

𝑁/ℱ = ⋀𝑘
𝑟 𝑄,

𝑖∗𝛼 ∶ 𝑄 → ⋀𝑘
𝑟 𝑄.

Coisotropic reduction

Theorem
In our example, 𝑘-Lagrangian submanifolds transversal to the vertical
distribution reduce to 𝑘-Lagrangian submanifolds.
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Local characterization of vertical coisotropic submanifolds

Definition
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟). A
submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 is called vertical if 𝑊|𝑁 ⊆ 𝑇 𝑁.

Theorem
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟), 𝑖 ∶ 𝑁 ↪ 𝑀 be
a vertical 𝑘-coisotropic submanifold, and 𝑗 ∶ 𝐿 ↪ 𝑀 be a 𝑘-Lagrangian
submanifold complementary to 𝑊 . Then there is a neighborhood 𝑈 of 𝐿 in
𝑀 , a submanifold 𝑄 ↪ 𝐿, a neighborhood 𝑉 of 𝐿 in ⋀𝑘

𝑟 𝐿, and a
multisymplectomorphism

𝜙 ∶ 𝑈 → 𝑉
satisfying

a) 𝜙 is the identity on 𝐿;
b) 𝜙(𝑁 ∩ 𝑈) = ⋀𝑘

𝑟 𝐿∣𝑄 ∩ 𝑉 .
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Idea of the proof
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Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem
Let (𝑀, 𝜔, 𝑊, ℰ) be a multisymplectic manifold of type (𝑘, 𝑟), 𝑖 ∶ 𝑁 ↪ 𝑀 be
a vertical 𝑘-coisotropic submanifold, and 𝑗 ∶ 𝐿 ↪ 𝑀 be 𝑘-Lagrangian
submanifold complementary to 𝑊 . If 𝑇 𝑁/𝑊 ∩ ℰ has constant rank, so
does (𝑇 𝑁)⟂,𝑘 and we have that, denoting by 𝜋 ∶ 𝑁 → 𝑁/ℱ the canonical
projection, 𝜋(𝐿 ∩ 𝑁) is 𝑘-Lagrangian in (𝑁, 𝜔𝑁).

A general result is not possible, since we can easily find counterexamples.
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Poisson bracket

Definition
Given two Hamiltonian forms 𝛼 ∈ Ω𝑙1 (𝑀), 𝛽 ∈ Ω𝑙2 (𝑀) on (𝑀, 𝜔),

Poisson bracket: {𝛼, 𝛽} ∶= (−1)𝑙1𝑙2+1𝜄𝑋𝛼∧𝑋𝛽
𝜔,

𝜄𝑋𝛼
𝜔 = 𝑑𝛼, 𝜄𝑋𝛽

𝜔 = 𝑑𝛽.

• Well-defined (independent of the choice of 𝑋𝛼, 𝑋𝛽),
• Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian
forms

(−1)deg𝛼 deg 𝛾̂{ ̂𝛼, { ̂𝛽, ̂𝛾}} + cycl. = 0,
for

̂𝛼 ∶= 𝛼 + (closed forms), deg ̂𝛼 ∶= 𝑘 − 1 − order(𝛼).
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Poisson bracket

• Restricts to a Lie bracket on

Ω̂𝑘−1
𝐻 (𝑀) ∶= (Hamiltonian (𝑘 − 1) − forms)/(closed (𝑘 − 1) − forms)

Proposition
A 𝑘-coisotropic submanifold 𝑖 ∶ 𝑁 ↪ 𝑀 defines a Lie subalgebra

𝐼𝑁 = { ̂𝛼 ∈ Ω̂𝑘−1
𝐻 (𝑀), 𝑖∗𝑑𝛼 = 0}

of the Lie algebra Ω̂𝑘−1
𝐻 (𝑀).
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Final remarks and future research



Final remarks and future research

• We gave an interpretation of dynamics as Lagrangian submanifolds.
• We proved a coisotropic reduction theorem in a particular class of
multisymplectic manifolds.

• For future research we have proposed the following:
• Apply the results obtained to Field Theories (regularization, constraint
analysis, etc)

• Extend these results to multicontact geometry for the study of dissipative
fields.

• Connect these ideas to higher analogues of Dirac structures (giving a unified
framework for both the Lagrangian and Hamiltonian formulation of Field
Theory).
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Thank you for your attention!

Questions?
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