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Calculus of Variations



The first order variational problem

Take a fibered manifold

with coordinates
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The first order variational problem

Take a fibered manifold
v 5 X,

with coordinates
(@, y") = (@),

We want to find sections ¢ : X — Y that extremize certain functional (the
action)

Slo) = [ <Gt

e
¢ Oxt

)

where £ (the Lagrangian density) is an n-form on X, with dim X =n .
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The first order variational problem

Take a fibered manifold
v 5 X,
with coordinates
(@, y") = (@),
We want to find sections ¢ : X — Y that extremize certain functional (the
action)

O’
Oxh

where £ (the Lagrangian density) is an n-form on X, with dim X =n .

ﬂw:éaww, )

For first order field theories, we can interpret

Lagrangian dentisy ~ £ : Jlr — /\ X;

Action ~ S[¢] = / Lo jlo.
X

3/23



Euler-Lagrange equations

Stationary sections will satisfy

d

E S[(Dt] =0,

t=0

for every possible variation ¢,, ¢, = ¢.
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Euler-Lagrange equations

Stationary sections will satisfy

d

— h,] =0
dt S[(pt] ’

t=0

for every possible variation ¢,, ¢, = ¢. The Euler-Lagrange equations for ¢

are:
Locall oL d oL
. dyt  dar \ 9z, )7
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Euler-Lagrange equations

Stationary sections will satisfy

d

— h,] =0
dt S[(pt] ’

t=0

for every possible variation ¢,, ¢, = ¢. The Euler-Lagrange equations for ¢

are:
Locall oL d oL
. dyt  dar \ 9z, )7

Intrinsically, (j'¢)*1eQ, =0,V € X(J'Y),
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Euler-Lagrange equations

Stationary sections will satisfy

d
dt

S[(bt] =0,

t=0

for every possible variation ¢,, ¢, = ¢. The Euler-Lagrange equations for ¢

are:
oL d oL
Locally, E ,

oyt = dar 07},
Intrinsically, (j'¢)*1eQ, =0,V € X(J'Y),
where Q. is the multisymplectic form of the theory, a closed (n + 1)-form

oL @ n—1 oL i n
Qﬂ—d((azi)Ady Ad xu_d<azizu_L>/\d x.

o %
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The importance of multisymplectic geometry

Symplectic Geometry ~ Classical Mechanics

Multisymplectic Geometry ~ Classical Field
Theories
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Symplectic Geometry



Definition (Symplectic manifold)
A symplectic manifold is a pair (M,w), where M is an manifold, and
w € Q%(M) is a closed, non-degenerate, 2-form.
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Definition (Symplectic manifold)
A symplectic manifold is a pair (M,w), where M is an manifold, and
w € Q%(M) is a closed, non-degenerate, 2-form.

Definition
For a subspace i : W < T, M, define the symplectic orthogonal as

Wt :={veT,M, wv,w)=0Ywe W} =keri*ob.

Lagrangian, T, L = (T, L)*
Important submanifolds
Coisotropic, (T,N)* C T, N
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Dynamics = Lagrangian submanifolds (Weinstein’s creed)

(M, w) symplectic — (T'M,&) symplectic,
,: TM — T*M (contraction)

~ L, .
W= bw"")l\ffa bo,
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Dynamics = Lagrangian submanifolds (Weinstein’s creed)

Definition

: Xy € X(M), (H € C*®(M)) such that
tx,w=dH.
: X € X(M) such that

dixyw = 0.
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Dynamics = Lagrangian submanifolds (Weinstein’s creed)

Definition
: Xy € X(M), (H € C*®(M)) such that
tx,w=dH.
: X € X(M) such that
dixyw = 0.
Theorem

A vector field X : M — T'M is locally Hamiltonian if and only if it defines a
Lagrangian submanifold of (T'M,&).
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Coisotropic reduction

Given a coisotropic submanifold 7 : N < M, the distribution
x s (T,N)*

is regular and involutive. Therefore, it arises from a maximal foliation 7.
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Coisotropic reduction

Given a coisotropic submanifold 7 : N < M, the distribution

x s (T,N)*
is regular and involutive. Therefore, it arises from a maximal foliation 7.
Then,
Theorem

If N/ admits a smooth manifold structure such that 7 : N — N/
defines a submersion (N /& is a quotient manifold), then there is an
unique symplectic form wy on N /& such that

Trwy = 1" w.

Furthermore, if L is a Lagrangian submanifold in M that has clean
intersection with N, 7(L N N) is a Lagrangian submanifold in (N/F,wy)
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Poisson brackets

Definition
(M, w) manifold, f,g € C®(M).

{fvg} = W(vaXg)'
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Poisson brackets

Definition
(M, w) manifold, f,g € C®(M).

{fvg} = W(vaXg)'

{f7 {97 h}} + CyC[- =0,

{fg,h} = flg.h} + g{f, n}.

9/23



Poisson brackets

Definition
(M,w) manifold, f,g € C°°(M).
{f7 {(] h}} + CyCl- =0,
{fg,h} = f{g,h} +g{f, h}.
Theorem

A submanifold N < M is coisotropic if and only if
Iy ={f€C>(M):df =0o0n N}

defines a Poisson subalgebra of (C*,{-,-}).
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Multisymplectic Manifolds




Multisymplectic Manifolds

Definition
A multisymplectic manifold of order & is a pair (M,w), where M is a
smooth manifold, and w is a closed (k + 1)—form.

No non-degeneracy required
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Multisymplectic Manifolds

Definition

A of order k is a pair (M, w), where M is a
smooth manifold, and w is a closed (k + 1)—form.

Definition
For W C T, M, and 1 < j < k define the as

Wi = {veT,M: Lomwy AW = 0, YWy, ., w; € W
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Multisymplectic Manifolds

Definition

A of order k is a pair (M, w), where M is a
smooth manifold, and w is a closed (k + 1)—form.

Definition
For W C T, M, and 1 < j < k define the as

Wi = {veT,M: Lomwy AW = 0, YWy, ., w; € W

j— Lagrangian, T, L + kerb, = (T, L)*7
Important submanifolds

j — Coisotropic, (T, N)* C T, N + kerb,
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Hamiltonian multivector fields and
forms




Dynamics = Lagrangian submanifolds

(M, w) multisymplectic — (\/]\175’1) multisymplectic
q
k+1—q
Q, =005 b, \/M N /\ M (contraction)

q

1/23



Dynamics = Lagrangian submanifolds

(M, w) multisymplectic — (\/MJNM) multisymplectic
q

k+1—q
O, =000 b, s \/ M — A M (contraction)

q

Definition

- Locally Hamiltonian multivector field: U : M — \/q M such that

diyw = 0.
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Dynamics = Lagrangian submanifolds

(M, w) - (\/ M, 5(1)
q
k+1—q

ﬁq = bZQEkq, b, \/M — /\ M (contraction)

q

Definition
UM — \/q M such that

diyw = 0.

Theorem
A multivector field U : M — \/q M is locally Hamiltonian if and only if it

defines a (k + 1 — q)—Lagrangian submanifold in <\/q M, §q>
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Coisotropic submanifolds




Coisotropic reduction

Given a k-coisotropic submanifold ¢ : N < M, we have

Proposition
The distribution x — (T,N)“* N T, N C T, N is involutive.

Thus, when it is regular, it arises from a foliation &.
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Coisotropic reduction

Given a k-coisotropic submanifold ¢ : N < M, we have
Proposition
The distribution x — (T,N)“* N T, N C T, N is involutive.

Thus, when it is regular, it arises from a foliation &.

Theorem

When N /& admits a smooth manifold structure such that the projection
7 : N — N/J defines a submersion (N/ is a quotient manifold), there
exists an unique multisymplectic form wy on N /& such that

T Wy = T*w.
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Multisymplectic manifolds of type (%, r)

Definition
Let L be a manifold and & be a regular distribution on L. Define:

k k
/\L ={a e /\L P le pone, @ = 0,Veq, ... e, € E}
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Multisymplectic manifolds of type (%, r)

Definition
Let L be a manifold and & be a regular distribution on L. Define:

k k
/\L ={a e /\L P le pone, @ = 0,Veq, ... e, € E}

k
(/\ L, S2L> is @ multisymplectic manifold
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Multisymplectic manifolds of type (%, r)

Definition
Let L be a manifold and & be a regular distribution on L. Define:

k k
/\L ={a e /\L P le pone, @ = 0,Veq, ... e, € E}

k
(/\L7 52L> isa

A multisymplectic manifold of type (k,r) (M,w, W, &) is @ multisymplectic
manifold (M,w) that is locally multisymplectomorphic to /\]: L.

Definition
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Multisymplectic manifolds of type (%, r)

Definition
Let L be a manifold and & be a regular distribution on L. Define:

k k
/\L ={a e /\L P le pone, @ = 0,Veq, ... e, € E}

k
(/\L7 52L> isa

A multisymplectic manifold of type (k,r) (M,w, W, &) is @ multisymplectic
manifold (M,w) that is locally multisymplectomorphic to /\]: L.

Definition

W ~ vertical distribution
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An example of coisotropic reduction

Let L be a smooth manifold, i : Q C L be a submanifold, and & be a regular
distribution. Then,
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An example of coisotropic reduction

Let L be a smooth manifold, i : Q C L be a submanifold, and & be a regular
distribution. Then,

Proposition

N = /\’:L]Q defines a k-coisotropic submanifold.

1423



An example of coisotropic reduction

Let L be a smooth manifold, i : Q C L be a submanifold, and & be a regular
distribution. Then,

Proposition

N = /\I: L]Q defines a k-coisotropic submanifold.

Theorem

For N = /\f L|Q, where T'Q N & has constant rank,

k
N/F = \Q.

1423



Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms,
since horizontal k-Lagrangian submanifolds are locally the image of closed
forms.
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Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms,
since horizontal k-Lagrangian submanifolds are locally the image of closed
forms.

N =L, N/F =Nl Q,

Coisotropic reduction

a:LH/\I:L. i*oe:Q—>/\]:Q.
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Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifold are given by closed forms,
since horizontal k-Lagrangian submanifolds are locally the image of closed

forms.
k k
N=AL| , . . . N/F = ,
A ‘Q Coisotropic reduction / A @
k . k
a:L—)/\TL. 'L*OCZQ_’/\TQ-
Theorem

In our example, k-Lagrangian submanifolds transversal to the vertical
distribution reduce to k-Lagrangian submanifolds.
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Local characterization of vertical coisotropic submanifolds

Definition
Let (M,w, W, &) be a multisymplectic manifold of type (k, 7). A
submanifold i : N < M is called if Wy CTN.
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Local characterization of vertical coisotropic submanifolds

Definition

Let (M,w, W, &) be a multisymplectic manifold of type (k, 7). A
submanifold i : N < M is called if Wy CTN.
Theorem

Let (M,w, W, &) be a multisymplectic manifold of type (k,r), i : N < M be
a vertical k-coisotropic submanifold, and j : L < M be a k-Lagrangian
submanifold complementary to W. Then there is a neighborhood U of L in
M, a submanifold @ < L, a neighborhood V of L in /\f L,and a
multisymplectomorphism

6:U—>V

satisfying

a) ¢ is the identity on L;
b) ¢(NNU) :/\’:L|va,
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Idea of the proof
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Lagrangian submanifold projection

This local characterization allows us to prove:

Theorem

Let (M,w, W, &) be a multisymplectic manifold of type (k,r),i: N < M be
a vertical k-coisotropic submanifold, and j : L < M be k-Lagrangian
submanifold complementary to W. If TN /W N & has constant rank, so
does (TN)“* and we have that, denoting by = : N — N/ the canonical
projection, (L N N) is k-Lagrangian in (N,wy).

A general result is not possible, since we can easily find counterexamples.
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Poisson bracket

Definition
Given two Hamiltonian forms a € Qi (M), B € Q2 (M) on (M, w),

Poisson bracket: {a, 8} := (=1)htta*liy |+ w,

Ly, w=da, Lx,w = dg.
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Poisson bracket

Definition
Given two Hamiltonian forms a € Qi (M), B € Q2 (M) on (M, w),

Poisson bracket: {a, 8} := (=1)htta*liy |+ w,

Ly, w=da, Lx,w = dg.
- Well-defined (independent of the choice of X, X),

- Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian
forms

(3]

(~1)*ETeEG, {5,7}) + cyel. = 0,

for

a = a+ (closed forms), dega := k — 1 — order(a).
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Poisson bracket

- Restricts to a Lie bracket on
ﬁﬁ";l(M) := (Hamiltonian (k —1) —forms)/(closed (k—1)—forms)

Proposition
A L-coisotropic submanifold i : N < M defines a Lie subalgebra

Iy = {a € Q% 1(M), i*da = 0}

of the Lie algebra Q%' (M).
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Final remarks and future research




Final remarks and future research

- We gave an interpretation of dynamics as Lagrangian submanifolds.

- We proved a coisotropic reduction theorem in a particular class of
multisymplectic manifolds.
- For future research we have proposed the following:
- Apply the results obtained to Field Theories (regularization, constraint
analysis, etc)
- Extend these results to multicontact geometry for the study of dissipative
fields.
- Connect these ideas to higher analogues of Dirac structures (giving a unified
framework for both the Lagrangian and Hamiltonian formulation of Field
Theory).
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Thank you for your attention!

Questions?
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