

Trabajo de Fin de Máster: Coisotropic reduction in Multisymplectic Geometry

Máster en Matemáticas Avanzadas

Alumno: Rubén Izquierdo-López

Director: Manuel de León

Tutor: Marco Castrillón

Tuesday 9th July, 2024

UCM

Outline

1. Calculus of Variations
2. Symplectic Geometry
3. Multisymplectic Manifolds
4. Hamiltonian multivector fields and forms
5. Coisotropic submanifolds
6. Final remarks and future research

Calculus of Variations

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X,$$

with coordinates

$$(x^\mu, y^i) \xrightarrow{\pi} (x^\mu).$$

We want to find sections $\phi : X \rightarrow Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu, \phi^i, \frac{\partial \phi^i}{\partial x^\mu}),$$

where \mathcal{L} (the **Lagrangian density**) is an n -form on X , with $\dim X = n$.

For **first order** field theories, we can interpret

$$\text{Lagrangian density} \sim \mathcal{L} : J^1\pi \rightarrow \bigwedge^n X;$$

$$\text{Action} \sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi.$$

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X,$$

with coordinates

$$(x^\mu, y^i) \xrightarrow{\pi} (x^\mu).$$

We want to find sections $\phi : X \rightarrow Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu, \phi^i, \frac{\partial \phi^i}{\partial x^\mu}),$$

where \mathcal{L} (the **Lagrangian density**) is an n -form on X , with $\dim X = n$.

For **first order** field theories, we can interpret

$$\text{Lagrangian density} \sim \mathcal{L} : J^1\pi \rightarrow \bigwedge^n X;$$

$$\text{Action} \sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi.$$

The first order variational problem

Take a fibered manifold

$$Y \xrightarrow{\pi} X,$$

with coordinates

$$(x^\mu, y^i) \xrightarrow{\pi} (x^\mu).$$

We want to find sections $\phi : X \rightarrow Y$ that extremize certain functional (the action)

$$S[\phi] := \int_X \mathcal{L}(x^\mu, \phi^i, \frac{\partial \phi^i}{\partial x^\mu}),$$

where \mathcal{L} (the **Lagrangian density**) is an n -form on X , with $\dim X = n$.

For **first order** field theories, we can interpret

$$\text{Lagrangian density} \sim \mathcal{L} : J^1\pi \rightarrow \bigwedge^n X;$$

$$\text{Action} \sim S[\phi] = \int_X \mathcal{L} \circ j^1\phi.$$

Euler-Lagrange equations

Stationary sections will satisfy

$$\frac{d}{dt} \bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation ϕ_t , $\phi_0 = \phi$. The Euler-Lagrange equations for ϕ are:

Locally, $\frac{\partial L}{\partial y^i} = \frac{d}{dx^\mu} \left(\frac{\partial L}{\partial z_\mu^i} \right),$

Intrinsically, $(j^1\phi)^* \iota_\xi \Omega_{\mathcal{L}} = 0, \forall \xi \in \mathfrak{X}(J^1Y),$

where $\Omega_{\mathcal{L}}$ is the multisymplectic form of the theory, a closed $(n+1)$ -form

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_\mu^i} \right) \wedge dy^i \wedge d^{n-1}x_\mu - d \left(\frac{\partial L}{\partial z_\mu^i} z_\mu^i - L \right) \wedge d^n x.$$

Euler-Lagrange equations

Stationary sections will satisfy

$$\frac{d}{dt} \bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation ϕ_t , $\phi_0 = \phi$. The Euler-Lagrange equations for ϕ are:

Locally, $\frac{\partial L}{\partial y^i} = \frac{d}{dx^\mu} \left(\frac{\partial L}{\partial z_\mu^i} \right),$

Intrinsically, $(j^1\phi)^* \iota_\xi \Omega_{\mathcal{L}} = 0, \forall \xi \in \mathfrak{X}(J^1Y),$

where $\Omega_{\mathcal{L}}$ is the multisymplectic form of the theory, a closed $(n+1)$ -form

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_\mu^i} \right) \wedge dy^i \wedge d^{n-1}x_\mu - d \left(\frac{\partial L}{\partial z_\mu^i} z_\mu^i - L \right) \wedge d^n x.$$

Euler-Lagrange equations

Stationary sections will satisfy

$$\frac{d}{dt} \bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation ϕ_t , $\phi_0 = \phi$. The Euler-Lagrange equations for ϕ are:

Locally, $\frac{\partial L}{\partial y^i} = \frac{d}{dx^\mu} \left(\frac{\partial L}{\partial z_\mu^i} \right),$

Intrinsically, $(j^1\phi)^* \iota_\xi \Omega_{\mathcal{L}} = 0, \forall \xi \in \mathfrak{X}(J^1Y),$

where $\Omega_{\mathcal{L}}$ is the **multisymplectic form** of the theory, a closed $(n+1)$ -form

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_\mu^i} \right) \wedge dy^i \wedge d^{n-1}x_\mu - d \left(\frac{\partial L}{\partial z_\mu^i} z_\mu^i - L \right) \wedge d^n x.$$

Euler-Lagrange equations

Stationary sections will satisfy

$$\frac{d}{dt} \bigg|_{t=0} S[\phi_t] = 0,$$

for every possible variation ϕ_t , $\phi_0 = \phi$. The Euler-Lagrange equations for ϕ are:

Locally,
$$\frac{\partial L}{\partial y^i} = \frac{d}{dx^\mu} \left(\frac{\partial L}{\partial z_\mu^i} \right),$$

Intrinsically,
$$(j^1\phi)^* \iota_\xi \Omega_{\mathcal{L}} = 0, \forall \xi \in \mathfrak{X}(J^1Y),$$

where $\Omega_{\mathcal{L}}$ is the **multisymplectic form** of the theory, a closed $(n+1)$ -form

$$\Omega_{\mathcal{L}} = d \left(\frac{\partial L}{\partial z_\mu^i} \right) \wedge dy^i \wedge d^{n-1}x_\mu - d \left(\frac{\partial L}{\partial z_\mu^i} z_\mu^i - L \right) \wedge d^n x.$$

Symplectic Geometry \sim Classical Mechanics

Multisymplectic Geometry \sim Classical Field Theories

Symplectic Geometry

Definition (Symplectic manifold)

A **symplectic manifold** is a pair (M, ω) , where M is a manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Definition

For a subspace $i : W \hookrightarrow T_x M$, define the **symplectic orthogonal** as

$$W^\perp := \{v \in T_q M, \omega(v, w) = 0, \forall w \in W\} = \ker i^* \circ \flat.$$

Important submanifolds $\begin{cases} \text{Lagrangian, } T_x L = (T_x L)^\perp \\ \text{Coisotropic, } (T_x N)^\perp \subseteq T_x N \end{cases}$

Definition (Symplectic manifold)

A **symplectic manifold** is a pair (M, ω) , where M is a manifold, and $\omega \in \Omega^2(M)$ is a closed, non-degenerate, 2-form.

Definition

For a subspace $i : W \hookrightarrow T_x M$, define the **symplectic orthogonal** as

$$W^\perp := \{v \in T_q M, \omega(v, w) = 0, \forall w \in W\} = \ker i^* \circ \flat.$$

Important submanifolds $\left\{ \begin{array}{l} \text{Lagrangian, } T_x L = (T_x L)^\perp \\ \text{Coisotropic, } (T_x N)^\perp \subseteq T_x N \end{array} \right.$

Dynamics = Lagrangian submanifolds (Weinstein's creed)

(M, ω) **symplectic** $\rightarrow (TM, \tilde{\omega})$ **symplectic**,

$\tilde{\omega} = \flat_{\omega}^* \omega_M$; $\flat_{\omega} : TM \rightarrow T^*M$ (contraction)

Definition

- **Hamiltonian vector field**: $X_H \in \mathfrak{X}(M)$, ($H \in C^\infty(M)$) such that

$$\iota_{X_H} \omega = dH.$$

- **Locally Hamiltonian vector field**: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X \omega = 0.$$

Theorem

A vector field $X : M \rightarrow TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM, \tilde{\omega})$.

(M, ω) **symplectic** $\rightarrow (TM, \tilde{\omega})$ **symplectic**,

$\tilde{\omega} = \flat_{\omega}^* \omega_M$; $\flat_{\omega} : TM \rightarrow T^*M$ (contraction)

Definition

- **Hamiltonian vector field**: $X_H \in \mathfrak{X}(M)$, ($H \in C^\infty(M)$) such that

$$\iota_{X_H} \omega = dH.$$

- **Locally Hamiltonian vector field**: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X \omega = 0.$$

Theorem

A vector field $X : M \rightarrow TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM, \tilde{\omega})$.

(M, ω) **symplectic** $\rightarrow (TM, \tilde{\omega})$ **symplectic**,

$\tilde{\omega} = \flat_{\omega}^* \omega_M$; $\flat_{\omega} : TM \rightarrow T^*M$ (contraction)

Definition

- **Hamiltonian vector field**: $X_H \in \mathfrak{X}(M)$, ($H \in C^\infty(M)$) such that

$$\iota_{X_H} \omega = dH.$$

- **Locally Hamiltonian vector field**: $X \in \mathfrak{X}(M)$ such that

$$d\iota_X \omega = 0.$$

Theorem

A vector field $X : M \rightarrow TM$ is locally Hamiltonian if and only if it defines a Lagrangian submanifold of $(TM, \tilde{\omega})$.

Coisotropic reduction

Given a coisotropic submanifold $i : N \hookrightarrow M$, the distribution

$$x \mapsto (T_x N)^\perp$$

is regular and involutive. Therefore, it arises from a maximal foliation \mathcal{F} . Then,

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi : N \rightarrow N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), then there is a unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^* \omega_N = i^* \omega.$$

Furthermore, if L is a Lagrangian submanifold in M that has clean intersection with N , $\pi(L \cap N)$ is a Lagrangian submanifold in $(N/\mathcal{F}, \omega_N)$

Coisotropic reduction

Given a coisotropic submanifold $i : N \hookrightarrow M$, the distribution

$$x \mapsto (T_x N)^\perp$$

is regular and involutive. Therefore, it arises from a maximal foliation \mathcal{F} . Then,

Theorem

If N/\mathcal{F} admits a smooth manifold structure such that $\pi : N \rightarrow N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), then there is a unique symplectic form ω_N on N/\mathcal{F} such that

$$\pi^* \omega_N = i^* \omega.$$

Furthermore, if L is a Lagrangian submanifold in M that has clean intersection with N , $\pi(L \cap N)$ is a Lagrangian submanifold in $(N/\mathcal{F}, \omega_N)$

Definition

(M, ω) **symplectic** manifold, $f, g \in C^\infty(M)$.

Poisson bracket: $\{f, g\} = \omega(X_f, X_g)$.

- Jacobi identity

$$\{f, \{g, h\}\} + \text{cycl.} = 0,$$

- Leibniz identity

$$\{fg, h\} = f\{g, h\} + g\{f, h\}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N = \{f \in C^\infty(M) : df = 0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^\infty, \{\cdot, \cdot\})$.

Definition

(M, ω) **symplectic** manifold, $f, g \in C^\infty(M)$.

Poisson bracket: $\{f, g\} = \omega(X_f, X_g)$.

- Jacobi identity

$$\{f, \{g, h\}\} + \text{cycl.} = 0,$$

- Leibniz identity

$$\{fg, h\} = f\{g, h\} + g\{f, h\}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N = \{f \in C^\infty(M) : df = 0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^\infty, \{\cdot, \cdot\})$.

Definition

(M, ω) **symplectic** manifold, $f, g \in C^\infty(M)$.

Poisson bracket: $\{f, g\} = \omega(X_f, X_g)$.

- Jacobi identity

$$\{f, \{g, h\}\} + \text{cycl.} = 0,$$

- Leibniz identity

$$\{fg, h\} = f\{g, h\} + g\{f, h\}.$$

Theorem

A submanifold $N \hookrightarrow M$ is coisotropic if and only if

$$I_N = \{f \in C^\infty(M) : df = 0 \text{ on } N\}$$

defines a Poisson subalgebra of $(C^\infty, \{\cdot, \cdot\})$.

Multisymplectic Manifolds

Multisymplectic Manifolds

Definition

A **multisymplectic manifold** of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed $(k+1)$ –form.

No non-degeneracy required

Definition

For $W \subseteq T_x M$, and $1 \leq j \leq k$ define the **multisymplectic orthogonal** as

$$W^{\perp, j} := \{v \in T_x M : \iota_{v \wedge w_1 \wedge \dots \wedge w_j} \omega = 0, \forall w_1, \dots, w_j \in W\}.$$

Important submanifolds $\begin{cases} j - \text{Lagrangian}, T_x L + \ker \flat_1 = (T_x L)^{\perp, j} \\ j - \text{Coisotropic}, (T_x N)^\perp \subseteq T_x N + \ker \flat_1 \end{cases}$

Multisymplectic Manifolds

Definition

A **multisymplectic manifold** of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed $(k+1)$ –form.

No non-degeneracy required

Definition

For $W \subseteq T_x M$, and $1 \leq j \leq k$ define the **multisymplectic orthogonal** as

$$W^{\perp,j} := \{v \in T_x M : \iota_{v \wedge w_1 \wedge \dots \wedge w_j} \omega = 0, \forall w_1, \dots, w_j \in W\}.$$

Important submanifolds $\begin{cases} j - \text{Lagrangian}, T_x L + \ker \flat_1 = (T_x L)^{\perp,j} \\ j - \text{Coisotropic}, (T_x N)^\perp \subseteq T_x N + \ker \flat_1 \end{cases}$

Multisymplectic Manifolds

Definition

A **multisymplectic manifold** of order k is a pair (M, ω) , where M is a smooth manifold, and ω is a closed $(k+1)$ –form.

No non-degeneracy required

Definition

For $W \subseteq T_x M$, and $1 \leq j \leq k$ define the **multisymplectic orthogonal** as

$$W^{\perp,j} := \{v \in T_x M : \iota_{v \wedge w_1 \wedge \dots \wedge w_j} \omega = 0, \forall w_1, \dots, w_j \in W\}.$$

Important submanifolds

$$\begin{cases} j - \text{Lagrangian}, T_x L + \ker \flat_1 = (T_x L)^{\perp,j} \\ j - \text{Coisotropic}, (T_x N)^\perp \subseteq T_x N + \ker \flat_1 \end{cases}$$

Hamiltonian multivector fields and forms

(M, ω) multisymplectic $\rightarrow \left(\bigvee_q M, \widetilde{\Omega}^q \right)$ multisymplectic

$\widetilde{\Omega}_q = \flat_q^* \Omega_M^{k+1-q}$, $\flat_q : \bigvee_q M \rightarrow \bigwedge^{k+1-q} M$ (contraction)

Definition

- Locally Hamiltonian multivector field: $U : M \rightarrow \bigvee_q M$ such that

$$d\iota_U \omega = 0.$$

Theorem

A multivector field $U : M \rightarrow \bigvee_q M$ is locally Hamiltonian if and only if it defines a $(k+1-q)$ -Lagrangian submanifold in $\left(\bigvee_q M, \widetilde{\Omega}^q \right)$

(M, ω) multisymplectic $\rightarrow \left(\bigvee_q M, \widetilde{\Omega}^q \right)$ multisymplectic

$\widetilde{\Omega}_q = \flat_q^* \Omega_M^{k+1-q}$, $\flat_q : \bigvee_q M \rightarrow \bigwedge^{k+1-q} M$ (contraction)

Definition

- Locally Hamiltonian multivector field: $U : M \rightarrow \bigvee_q M$ such that

$$d\iota_U \omega = 0.$$

Theorem

A multivector field $U : M \rightarrow \bigvee_q M$ is locally Hamiltonian if and only if it defines a $(k+1-q)$ -Lagrangian submanifold in $\left(\bigvee_q M, \widetilde{\Omega}^q \right)$

(M, ω) multisymplectic $\rightarrow \left(\bigvee_q M, \widetilde{\Omega}^q \right)$ multisymplectic

$\widetilde{\Omega}_q = \flat_q^* \Omega_M^{k+1-q}$, $\flat_q : \bigvee_q M \rightarrow \bigwedge^{k+1-q} M$ (contraction)

Definition

- Locally Hamiltonian multivector field: $U : M \rightarrow \bigvee_q M$ such that

$$d\iota_U \omega = 0.$$

Theorem

A multivector field $U : M \rightarrow \bigvee_q M$ is locally Hamiltonian if and only if it defines a $(k+1-q)$ -Lagrangian submanifold in $\left(\bigvee_q M, \widetilde{\Omega}^q \right)$

Coisotropic submanifolds

Coisotropic reduction

Given a k -coisotropic submanifold $i : N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp, k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, it arises from a foliation \mathcal{F} .

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi : N \rightarrow N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), there exists a unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^* \omega_N = i^* \omega.$$

What about projection of Lagrangian submanifolds?

Coisotropic reduction

Given a k -coisotropic submanifold $i : N \hookrightarrow M$, we have

Proposition

The distribution $x \mapsto (T_x N)^{\perp, k} \cap T_x N \subseteq T_x N$ is involutive.

Thus, when it is regular, it arises from a foliation \mathcal{F} .

Theorem

When N/\mathcal{F} admits a smooth manifold structure such that the projection $\pi : N \rightarrow N/\mathcal{F}$ defines a submersion (N/\mathcal{F} is a quotient manifold), there exists a unique multisymplectic form ω_N on N/\mathcal{F} such that

$$\pi^* \omega_N = i^* \omega.$$

What about projection of Lagrangian submanifolds?

Multisymplectic manifolds of type (k, r)

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L . Define:

$$\bigwedge_r^k L = \{\alpha \in \bigwedge^k L : \iota_{e_1 \wedge \dots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E}\}.$$

$\left(\bigwedge_r^k L, \Omega_L \right)$ is a **multisymplectic manifold**

Definition

A multisymplectic manifold of type (k, r) $(M, \omega, W, \mathcal{E})$ is a multisymplectic manifold (M, ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

$W \sim$ vertical distribution

Multisymplectic manifolds of type (k, r)

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L . Define:

$$\bigwedge_r^k L = \{\alpha \in \bigwedge^k L : \iota_{e_1 \wedge \dots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E}\}.$$

$\left(\bigwedge_r^k L, \Omega_L \right)$ is a **multisymplectic manifold**

Definition

A multisymplectic manifold of type (k, r) $(M, \omega, W, \mathcal{E})$ is a multisymplectic manifold (M, ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

$W \sim$ vertical distribution

Multisymplectic manifolds of type (k, r)

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L . Define:

$$\bigwedge_r^k L = \{\alpha \in \bigwedge_r^k L : \iota_{e_1 \wedge \dots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E}\}.$$

$\left(\bigwedge_r^k L, \Omega_L \right)$ is a **multisymplectic manifold**

Definition

A multisymplectic manifold of type (k, r) $(M, \omega, W, \mathcal{E})$ is a multisymplectic manifold (M, ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

$W \sim$ vertical distribution

Multisymplectic manifolds of type (k, r)

Definition

Let L be a manifold and \mathcal{E} be a regular distribution on L . Define:

$$\bigwedge_r^k L = \{\alpha \in \bigwedge^k L : \iota_{e_1 \wedge \dots \wedge e_r} \alpha = 0, \forall e_1, \dots, e_r \in \mathcal{E}\}.$$

$\left(\bigwedge_r^k L, \Omega_L \right)$ is a **multisymplectic manifold**

Definition

A multisymplectic manifold of type (k, r) $(M, \omega, W, \mathcal{E})$ is a multisymplectic manifold (M, ω) that is locally multisymplectomorphic to $\bigwedge_r^k L$.

$W \sim$ vertical distribution

An example of coisotropic reduction

Let L be a smooth manifold, $i : Q \subseteq L$ be a submanifold, and \mathcal{E} be a regular distribution. Then,

Proposition

$N := \bigwedge_r^k L|_Q$ defines a k -coisotropic submanifold.

Theorem

For $N = \bigwedge_r^k L|_Q$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F} \cong \bigwedge_r^k Q.$$

An example of coisotropic reduction

Let L be a smooth manifold, $i : Q \subseteq L$ be a submanifold, and \mathcal{E} be a regular distribution. Then,

Proposition

$N := \bigwedge_r^k L|_Q$ defines a k -coisotropic submanifold.

Theorem

For $N = \bigwedge_r^k L|_Q$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F} \cong \bigwedge_r^k Q.$$

An example of coisotropic reduction

Let L be a smooth manifold, $i : Q \subseteq L$ be a submanifold, and \mathcal{E} be a regular distribution. Then,

Proposition

$N := \bigwedge_r^k L|_Q$ defines a k -coisotropic submanifold.

Theorem

For $N = \bigwedge_r^k L|_Q$, where $TQ \cap \mathcal{E}$ has constant rank,

$$N/\mathcal{F} \cong \bigwedge_r^k Q.$$

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifolds are given by **closed forms**, since **horizontal k -Lagrangian submanifolds** are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L|_Q, \\ \alpha : L \rightarrow \bigwedge_r^k L. \end{cases} \xrightarrow{\text{Coisotropic reduction}} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ i^* \alpha : Q \rightarrow \bigwedge_r^k Q. \end{cases}$$

Theorem

In our example, k -Lagrangian submanifolds transversal to the vertical distribution reduce to k -Lagrangian submanifolds.

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifolds are given by **closed forms**, since **horizontal k -Lagrangian submanifolds** are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L|_Q, \\ \alpha : L \rightarrow \bigwedge_r^k L. \end{cases} \xrightarrow{\text{Coisotropic reduction}} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ i^* \alpha : Q \rightarrow \bigwedge_r^k Q. \end{cases}$$

Theorem

In our example, k -Lagrangian submanifolds transversal to the vertical distribution reduce to k -Lagrangian submanifolds.

Projection of Lagrangian submanifolds (example)

An important class of Lagrangian submanifolds are given by **closed forms**, since **horizontal k -Lagrangian submanifolds** are locally the image of closed forms.

$$\begin{cases} N = \bigwedge_r^k L|_Q, \\ \alpha : L \rightarrow \bigwedge_r^k L. \end{cases} \xrightarrow{\text{Coisotropic reduction}} \begin{cases} N/\mathcal{F} = \bigwedge_r^k Q, \\ i^* \alpha : Q \rightarrow \bigwedge_r^k Q. \end{cases}$$

Theorem

In our example, k -Lagrangian submanifolds transversal to the vertical distribution reduce to k -Lagrangian submanifolds.

Definition

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r) . A submanifold $i : N \hookrightarrow M$ is called **vertical** if $W|_N \subseteq TN$.

Theorem

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r) , $i : N \hookrightarrow M$ be a vertical k -coisotropic submanifold, and $j : L \hookrightarrow M$ be a k -Lagrangian submanifold complementary to W . Then there is a neighborhood U of L in M , a submanifold $Q \hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi : U \rightarrow V$$

satisfying

- ϕ is the identity on L ;
- $\phi(N \cap U) = \bigwedge_r^k L|_Q \cap V$.

Definition

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r) . A submanifold $i : N \hookrightarrow M$ is called **vertical** if $W|_N \subseteq TN$.

Theorem

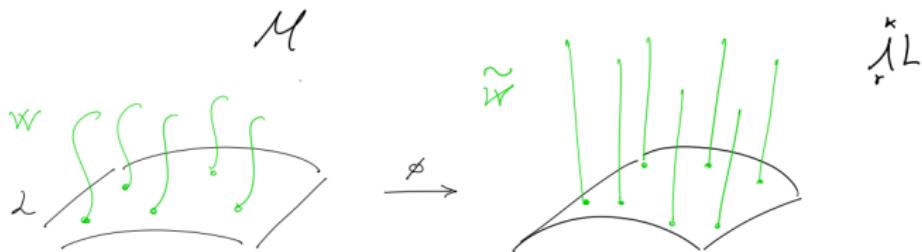
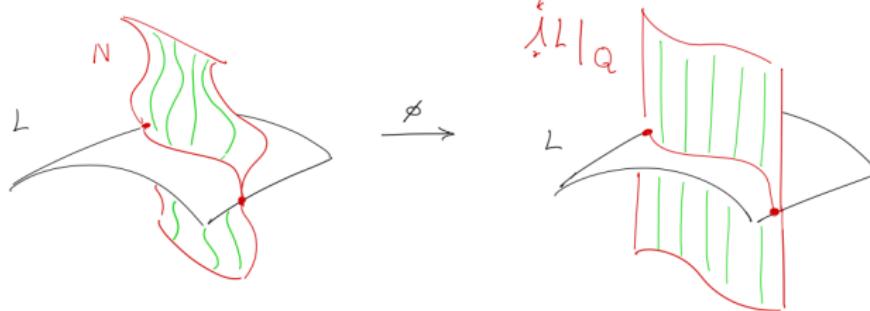
Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r) , $i : N \hookrightarrow M$ be a vertical k -coisotropic submanifold, and $j : L \hookrightarrow M$ be a k -Lagrangian submanifold complementary to W . Then there is a neighborhood U of L in M , a submanifold $Q \hookrightarrow L$, a neighborhood V of L in $\bigwedge_r^k L$, and a multisymplectomorphism

$$\phi : U \rightarrow V$$

satisfying

- ϕ is the identity on L ;
- $\phi(N \cap U) = \bigwedge_r^k L|_Q \cap V$.

Idea of the proof



This local characterization allows us to prove:

Theorem

Let $(M, \omega, W, \mathcal{E})$ be a multisymplectic manifold of type (k, r) , $i : N \hookrightarrow M$ be a vertical k -coisotropic submanifold, and $j : L \hookrightarrow M$ be k -Lagrangian submanifold complementary to W . If $TN/W \cap \mathcal{E}$ has constant rank, so does $(TN)^{\perp, k}$ and we have that, denoting by $\pi : N \rightarrow N/\mathcal{F}$ the canonical projection, $\pi(L \cap N)$ is k -Lagrangian in (N, ω_N) .

A general result is not possible, since we can easily find counterexamples.

Definition

Given two Hamiltonian forms $\alpha \in \Omega^{l_1}(M)$, $\beta \in \Omega^{l_2}(M)$ on (M, ω) ,

Poisson bracket: $\{\alpha, \beta\} := (-1)^{l_1 l_2 + 1} \iota_{X_\alpha \wedge X_\beta} \omega,$

$\iota_{X_\alpha} \omega = d\alpha$, $\iota_{X_\beta} \omega = d\beta$.

- **Well-defined** (independent of the choice of X_α, X_β),
- Modulo closed-forms, it defines a **graded Lie algebra** on Hamiltonian forms

$$(-1)^{\deg \hat{\alpha} \deg \hat{\gamma}} \{\hat{\alpha}, \{\hat{\beta}, \hat{\gamma}\}\} + \text{cycl.} = 0,$$

for

$$\hat{\alpha} := \alpha + (\text{closed forms}), \quad \deg \hat{\alpha} := k - 1 - \text{order}(\alpha).$$

Definition

Given two Hamiltonian forms $\alpha \in \Omega^{l_1}(M)$, $\beta \in \Omega^{l_2}(M)$ on (M, ω) ,

Poisson bracket: $\{\alpha, \beta\} := (-1)^{l_1 l_2 + 1} \iota_{X_\alpha \wedge X_\beta} \omega$,

$$\iota_{X_\alpha} \omega = d\alpha, \iota_{X_\beta} \omega = d\beta.$$

- Well-defined (independent of the choice of X_α, X_β),
- Modulo closed-forms, it defines a graded Lie algebra on Hamiltonian forms

$$(-1)^{\deg \hat{\alpha} \deg \hat{\gamma}} \{\hat{\alpha}, \{\hat{\beta}, \hat{\gamma}\}\} + \text{cycl.} = 0,$$

for

$$\hat{\alpha} := \alpha + (\text{closed forms}), \deg \hat{\alpha} := k - 1 - \text{order}(\alpha).$$

- Restricts to a **Lie bracket** on

$$\widehat{\Omega}_H^{k-1}(M) := (\text{Hamiltonian } (k-1) - \text{forms}) / (\text{closed } (k-1) - \text{forms})$$

Proposition

A **k -coisotropic** submanifold $i : N \hookrightarrow M$ defines a Lie subalgebra

$$I_N = \{\hat{\alpha} \in \widehat{\Omega}_H^{k-1}(M), \ i^*d\alpha = 0\}$$

of the Lie algebra $\widehat{\Omega}_H^{k-1}(M)$.

Final remarks and future research

- We gave an interpretation of dynamics as Lagrangian submanifolds.
- We proved a coisotropic reduction theorem in a particular class of multisymplectic manifolds.
- For future research we have proposed the following:
 - Apply the results obtained to Field Theories (regularization, constraint analysis, etc)
 - Extend these results to multicontact geometry for the study of dissipative fields.
 - Connect these ideas to higher analogues of Dirac structures (giving a unified framework for both the Lagrangian and Hamiltonian formulation of Field Theory).

References

- [1] F. Cantrijn, A. Ibort, and M. De León. “**On the geometry of multisymplectic manifolds**”. In: *Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics* 66.3 (June 1999), pp. 303–330. ISSN: 0263-6115. DOI: [10.1017/s1446788700036636](https://doi.org/10.1017/s1446788700036636).
- [2] F. Cantrijn, A. Ibort, and M. de León. “**Hamiltonian structures on multisymplectic manifolds**”. In: *Rend. Sem. Mat. Univ. Politec. Torino* 54.3 (Jan. 1996), pp. 225–236.
- [3] M. de León and R. Izquierdo-López. **Coisotropic reduction in Multisymplectic Geometry**. Tech. rep. arXiv:2405.12898 [math] type: article. arXiv, June 2024. DOI: [10.48550/arXiv.2405.12898](https://doi.org/10.48550/arXiv.2405.12898).
- [4] M. de León and R. Izquierdo-López. “**Topical review: A review on coisotropic reduction in symplectic, cosymplectic, contact and co-contact Hamiltonian systems**”. In: *Journal of Physics A: Mathematical and Theoretical* 57.16 (Apr. 2024), p. 163001. ISSN: 1751-8121. DOI: [10.1088/1751-8121/ad37b2](https://doi.org/10.1088/1751-8121/ad37b2).

Thank you for your attention!

Questions?