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1. Homologia Singular

Objetivo: asignar a cada espacio topolégico una sucesién de
grupos H,,(X), n > 0 representando los agujeros n-dimensionales
del espacio.
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1.1 Los grupos de Homologia Singular

Definimos el n-simplice canénico, A", como la envoltura
convexa de {eq, ... ,e,} en R"T1.
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1.1 Los grupos de Homologia Singular

Definimos el n-simplice canénico, A", como la envoltura

convexa de {eq, ... ,e,} en R"T1.
° o———o
0-simplex 1-simplex 2-simplex 3-simplex

Idea: Encontraremos agujeros n-dimensionales si podemos
encontrar combinaciones de n-simplices en X sin borde que no
conformen el borde de ningtin (n + 1)-simplice.



Fijamos X un espacio topoldgico arbitrario.

Definicién 1.2 (Grupo de Cadenas Singulares) |

Para n > 1, definimos C,,(X), el grupo de n-Cadenas
Singulares, como el grupo libre abeliano generado por todos los
n-simplices singulares, es decir, las aplicaciones

o: A" = X.

En n = —1 definimos C_1(X) como el grupo nulo.



Fijamos X un espacio topoldgico arbitrario.

Definicién 1.2 (Grupo de Cadenas Singulares) |

Para n > 1, definimos C,,(X), el grupo de n-Cadenas
Singulares, como el grupo libre abeliano generado por todos los
n-simplices singulares, es decir, las aplicaciones

o: A" — X.
En n = —1 definimos C_1(X) como el grupo nulo.
Definicién 1.3 (Cara i-ésima (n — 1)-dimensional)

La i-ésima cara (n — 1)-dimensional de A™ es la aplicacién
continua € : A"~ — A" dada por

€N(X0y -y Tn) = (Toy -+ Tim1,0, T4y . o, Tp).
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Definicién 1.4 (Operador borde)

Definimos 0, : Cp(X) — C,—1(X) en los n-simplices singulares

como
n

Ono = Z(—l)iae?

i=0
y en el caso n = 0 definimos 0y := 0.
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8nan+1 = O
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Definicién 1.4 (Operador borde) |
Definimos 0, : Cp(X) — C,—1(X) en los n-simplices singulares

como
n

Ono = Z(—l)iae?

i=0
y en el caso n = 0 definimos 0y := 0.

Proposicién 1.1

anan+1 = O

Definicién 1.5 (n-ésimo grupo de Homologia Singular)

H,(X):=Kerd,/Imd,41.
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De esta definicion obtenemos:
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De esta definicion obtenemos:

@ Los grupos de Homologia son invariantes por homeomorfismo.
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De esta definiciéon obtenemos:
@ Los grupos de Homologia son invariantes por homeomorfismo.
@ Si X es unipuntual, H,(X)=0enn>1y Hy(X) = Z.
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De esta definiciéon obtenemos:
@ Los grupos de Homologia son invariantes por homeomorfismo.
@ Si X es unipuntual, H,(X)=0enn>1y Hy(X) = Z.

e Si X =[], X, (descomposicién en componentes conexas por
caminos), tenemos

Hy(X) =Pz,

Ho(X) = D Hu(Xa).
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1.2 Aplicaciones inducidas en la Homologia

Si f: X =Y es una aplicacion continua, definimos el
homomorfismo inducido en la Homologia
fo : Ho(X) = Hp(Y') como:

o] - [Surea]

e
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La Homologia tiene el siguiente caracter funtorial:
eSif: X—>Y,g:Y — Z, entonces (fog)s = fx 0 gs.
o 1,=1.
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La Homologia tiene el siguiente caracter funtorial:
eSif: X—>Y,g:Y — Z, entonces (fog)s = fx 0 gs.
o 1,=1.

Ademas:

Teorema 2.1 (Invariancia por homotopia de la Homologia)

Si f ~ g, entonces f, = g
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La Homologia tiene el siguiente caracter funtorial:
eSif: X—>Y,g:Y — Z, entonces (fog)s = fx 0 gs.
o 1,=1.

Ademas:

Teorema 2.1 (Invariancia por homotopia de la Homologia)

Si f ~ g, entonces f, = g

Corolario 2.1

Los grupos de Homologia son invariantes por el Tipo de
Homotopia.
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1.3 Homologia Relativa

Sea A C X. Los grupos de Homologia Relativa son los grupos de
Homologia de las Cadenas Relativas, es decir,

Ll o) jea(A) B e (00) /G (a) 2t

H,(X,A) := Ker[0,]/ Im[0p+1].
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Teorema 3.1 (Secuencia exacta de la Homologia Relativa) |

Sea A C X un subespacio. Los grupos de Homologia encajan en
una secuencia exacta larga:

o8

w*/ .
H,(A) —— H,(X) —— H,(X, A)

/

H,_ (A)lH (X)LH (X, A)

/
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1.4 Secuencia exacta de Mayer-Vietoris

Teorema 4.1 (Secuencia exacta de Mayer-Vietoris)

Si X es la union de los interiores de dos subespacios A, B, los
grupos de Homologia encajan en una secuencia exacta larga:

(/a*/
Hy(AnB) —2 5 H,(A) e H,(B) 7“P* Hy(X)
Ox

Hy(AnB) —2% H, 1(4) w Hy 1(X)

| /8*
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H,(S")=Z, n>1
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H,(S")=Z, n>1

Sean A= S"N{zpt1 > —%} B:=S5"N{zp41 < %}

T
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H,(S")=Z, n>1

Sean A= S"N{zpt1 > —%} B:=S5"N{zp41 < %}

T

Entonces:
e A, B son homeomorfos a B".

e AN B es del mismo Tipo de Homotopia que S™~1.
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@ En el caso n = 0, es claro que Hy(SY) 2 Z & Z.

@ En el caso n =1, tomamos la secuencia:
W, 1y O« 0y Ux [ 1
0— Hl(S ) — H()(S ) — HU(A)@H()(B) — HO(S ) —0

0 H(SHY - ZOZ 207 — 70,
es decir, H;(S1) 2 Z.

@ Enn > 2, tenemos
0— H,(S") = H,_1(S" ') =0,

es decir, H,(S™) = Z.
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2. Homologia Celular

Objetivo: Obtener una manera mas sencilla de calcular los grupos
de Homologia Singular restringiendo la clase de espacios a estudiar.
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2.1 CW Complejos

Definicién 1.1 (CW-Complejo) |
Un CW -complejo es un espacio topologico X Hausdorff junto a

una familia de aplicaciones ®,, : A — X llamadas aplicaciones
caracteristicas, satisfaciendo las propiedades:
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2.1 CW Complejos

Definicién 1.1 (CW-Complejo) |
Un CW -complejo es un espacio topologico X Hausdorff junto a
una familia de aplicaciones ®,, : A — X llamadas aplicaciones
caracteristicas, satisfaciendo las propiedades:
@ La restriccion de ®,, define un homeomorfismo entre AZ y su
imagen.
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2.1 CW Complejos

Definicién 1.1 (CW-Complejo) |
Un CW -complejo es un espacio topologico X Hausdorff junto a

una familia de aplicaciones ®,, : A — X llamadas aplicaciones
caracteristicas, satisfaciendo las propiedades:
o La restriccion de ®,, define un homeomorfismo entre A y su
imagen.

o Las células abiertas (eq := ®o(A™)) recubren X y su
topologia es coherente con la de X, esto es, F' es cerrado en
X si y sélamente si F' N e, es cerrado para cada .
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2.1 CW Complejos

Definicién 1.1 (CW-Complejo) |
Un CW -complejo es un espacio topologico X Hausdorff junto a
una familia de aplicaciones ®,, : A — X llamadas aplicaciones
caracteristicas, satisfaciendo las propiedades:

@ La restriccion de ®,, define un homeomorfismo entre AZ y su
imagen.
o Las células abiertas (eq := ®o(A™)) recubren X y su

topologia es coherente con la de X, esto es, F' es cerrado en
X si y sélamente si F' N e, es cerrado para cada .

o O,(0A) estd contenido en una unidn finita de células de
dimension estrictamente menor que n. para cada .
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X", el n-esqueleto, es la unién de todas las células de dimension
menor o igual que n.
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X", el n-esqueleto, es la unién de todas las células de dimension

menor o igual que n.

S
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2.2 Los grupos de Homologia Celular
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s grupos de Homologia Celular

Definicién 2.1 (Grupo de las Cadenas Celulares)
CM(X) =Hy(X", X" = f Za

Py AT XN

Definicién 2.2 (Borde Celular)

Definimos el n-ésimo operador borde celular
dp : CM(X) — CM 1 (X)
como la composicion

Ho(x™, Xm0 & g (xr Y 2 J, (X", X2,

es decir,
dp[Po] := [0D4].
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Proposicion 2.1

dn ¢ dnJrl = 0.
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Proposicion 2.1

dn ¢ dnJrl = 0.

Definicién 2.3 (Grupos de Homologia Celular)

H"(X) :=Kerd, /Imdyy; .
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Proposicion 2.1

dn o dn+1 = 0.
Definicién 2.3 (Grupos de Homologia Celular)

H"(X) :=Kerd, /Imdyy; .

Teorema 2.1
Existe un isomorfimso natural

A H(X) = Hy(X).
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2.3 Un ejemplo

Dotamos a T = S' x S' de la estructura de CW -complejo
mostrada en la imagen:
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Tenemos las cadenas celulares
do dq
7 —=7®7Z—7— 0.

Como d; = 0 (como podemos comprobar usando teoria del grado),
tenemos que la Homologia Celular (y por tanto Singular) coincide
con las cadenas celulares, esto es Hy(T') = Ho(T) = Z,
H(T)=27Z& 7.
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3.1 La caracteristica de Euler-Poincaré

Sea X un CW-complejo con finitas células, esto es, compacto.
Definimos su caracteristica de Euler-Poincaré como la suma

alternada _
X(X) =) (-1 e,

i

siendo «; el niimero de i-células.
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3.1 La caracteristica de Euler-Poincaré

Definicién 1.1 (Caracteristica de Euler Poincaré) |

Sea X un CW-complejo con finitas células, esto es, compacto.
Definimos su caracteristica de Euler-Poincaré como la suma

alternada '
X(X) =) (-D'o,

siendo «; el niimero de i-células.

Ejemplo 1.1 |
La esfera S™ con la estructura de C'W -complejo de una 0-célula y
una n-célula tiene caracteristica

X(S™) =1+ (1)
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Sea X un CW -complejo compacto. Denotamos por 3, < oo, el
n-ésimo ndmero de Betti de X, como el rango del grupo abeliano
finitamente generado H,(X).




Definicién 1.2 (Nimeros de Betti) |

Sea X un CW -complejo compacto. Denotamos por 3, < oo, el
n-ésimo numero de Betti de X, como el rango del grupo abeliano
finitamente generado H,(X).

Teorema 1.1
Sea X un CW-complejo compacto, tenemos

2(X) = 3 (1B

En particular, la caracteristica de Euler-Poincaré es un invariante
por el Tipo de Homotopia.
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En el caso particular de S?, obtenemos el invariante algebraico mas
antiguo, la caracteristica de Euler:

V—A+C=x(52)=2
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3.2 Otros teoremas clasicos

La Homologia es una herramienta muy potente y con ella se
pueden demostrar los siguientes Teoremas (entre otros):

@ Teorema del punto fijo de Brouwer.

@ Teorema de la curva de Jordan.

@ 52" no admite campos tangentes nunca nulos.
°

Teorema de Borsuk-Ulam.



iMuchas gracias!



iMuchas gracias!
i Alguna pregunta?
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