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Un ejemplo

3 Aplicaciones
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1. Homoloǵıa Singular

Objetivo: asignar a cada espacio topológico una sucesión de
grupos Hn(X), n ≥ 0 representando los agujeros n-dimensionales
del espacio.
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1.1 Los grupos de Homoloǵıa Singular

Definición 1.1 (n-śımplice canónico)

Definimos el n-śımplice canónico, ∆n, como la envoltura
convexa de {e0, . . . , en} en Rn+1.

Idea: Encontraremos agujeros n-dimensionales si podemos
encontrar combinaciones de n-śımplices en X sin borde que no
conformen el borde de ningún (n+ 1)-śımplice.
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Fijamos X un espacio topológico arbitrario.

Definición 1.2 (Grupo de Cadenas Singulares)

Para n ≥ 1, definimos Cn(X), el grupo de n-Cadenas
Singulares, como el grupo libre abeliano generado por todos los
n-śımplices singulares, es decir, las aplicaciones

σ : ∆n → X.

En n = −1 definimos C−1(X) como el grupo nulo.

Definición 1.3 (Cara i-ésima (n− 1)-dimensional)

La i-ésima cara (n− 1)-dimensional de ∆n es la aplicación
continua ϵni : ∆n−1 → ∆n dada por

ϵni (x0, . . . , xn) = (x0, . . . , xi−1, 0, xi, . . . , xn).
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Definición 1.4 (Operador borde)

Definimos ∂n : Cn(X) → Cn−1(X) en los n-śımplices singulares
como

∂nσ :=

n∑
i=0

(−1)iσϵni

y en el caso n = 0 definimos ∂0 := 0.

Proposición 1.1

∂n∂n+1 = 0.

Definición 1.5 (n-ésimo grupo de Homoloǵıa Singular)

Hn(X) := Ker ∂n/ Im ∂n+1.
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De esta definición obtenemos:

Los grupos de Homoloǵıa son invariantes por homeomorfismo.

Si X es unipuntual, Hn(X) = 0 en n ≥ 1 y H0(X) ∼= Z.
Si X =

⊔
αXα (descomposición en componentes conexas por

caminos), tenemos

H0(X) ∼=
⊕
α

Z,

Hn(X) ∼=
⊕
α

Hn(Xα).
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1.2 Aplicaciones inducidas en la Homoloǵıa

Definición 2.1 (Homomorfismo inducido en la Homoloǵıa)

Si f : X → Y es una aplicación continua, definimos el
homomorfismo inducido en la Homoloǵıa
f∗ : Hn(X) → Hn(Y ) como:

f∗

[∑
i

niσi

]
:=

[∑
i

nif ◦ σi

]
.
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La Homoloǵıa tiene el siguiente carácter funtorial:

Si f : X → Y , g : Y → Z, entonces (f ◦ g)∗ = f∗ ◦ g∗.
1∗ = 1.

Además:

Teorema 2.1 (Invariancia por homotoṕıa de la Homoloǵıa)

Si f ∼ g, entonces f∗ = g∗

Corolario 2.1

Los grupos de Homoloǵıa son invariantes por el Tipo de
Homotoṕıa.
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Si f ∼ g, entonces f∗ = g∗

Corolario 2.1
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1.3 Homoloǵıa Relativa

Definición 3.1 (Grupos de Homoloǵıa Relativa)

Sea A ⊆ X. Los grupos de Homoloǵıa Relativa son los grupos de
Homoloǵıa de las Cadenas Relativas, es decir,

. . .
[∂n+1]−−−−→ Cn(X)/Cn(A)

[∂n]−−→ Cn−1(X)/Cn−1(A)
[∂n−1]−−−−→ . . .

Hn(X,A) := Ker[∂n]/ Im[∂n+1].



Homoloǵıa Singular Homoloǵıa Celular Aplicaciones

Teorema 3.1 (Secuencia exacta de la Homoloǵıa Relativa)

Sea A ⊆ X un subespacio. Los grupos de Homoloǵıa encajan en
una secuencia exacta larga:
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1.4 Secuencia exacta de Mayer-Vietoris

Teorema 4.1 (Secuencia exacta de Mayer-Vietoris)

Si X es la unión de los interiores de dos subespacios A,B, los
grupos de Homoloǵıa encajan en una secuencia exacta larga:
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Ejemplo 4.1

Hn(S
n) ∼= Z, n ≥ 1

Sean A := Sn ∩ {xn+1 ≥ −1
2}, B := Sn ∩ {xn+1 ≤ 1

2}.

Entonces:

A,B son homeomorfos a Bn.

A ∩B es del mismo Tipo de Homotoṕıa que Sn−1.
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En el caso n = 0, es claro que H0(S
0) ∼= Z⊕ Z.

En el caso n = 1, tomamos la secuencia:

0
Ψ∗−−→ H1(S

1)
∂∗−→ H0(S

0)
Ψ∗−−→ H0(A)⊕H0(B)

Φ∗−−→ H0(S
1) → 0

0 → H1(S
1) → Z⊕ Z → Z⊕ Z → Z → 0,

es decir, H1(S
1) ∼= Z.

En n ≥ 2, tenemos

0 → Hn(S
n) → Hn−1(S

n−1) → 0,

es decir, Hn(S
n) ∼= Z.
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2. Homoloǵıa Celular

Objetivo: Obtener una manera más sencilla de calcular los grupos
de Homoloǵıa Singular restringiendo la clase de espacios a estudiar.
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2.1 CW Complejos

Definición 1.1 (CW -Complejo)

Un CW -complejo es un espacio topológico X Hausdorff junto a
una familia de aplicaciones Φα : ∆n

α → X llamadas aplicaciones
caracteŕısticas, satisfaciendo las propiedades:

La restricción de Φα define un homeomorfismo entre ∆̊n
α y su

imagen.

Las células abiertas (eα := Φα(∆̊
n
α)) recubren X y su

topoloǵıa es coherente con la de X, esto es, F es cerrado en
X si y sólamente si F ∩ eα es cerrado para cada α.

Φα(∂∆
n
α) está contenido en una unión finita de células de

dimensión estrictamente menor que n para cada α.
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Definición 1.2 (n-esqueleto)

Xn, el n-esqueleto, es la unión de todas las células de dimensión
menor o igual que n.
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2.2 Los grupos de Homoloǵıa Celular

Definición 2.1 (Grupo de las Cadenas Celulares)

C CW

n (X) := Hn(X
n, Xn−1) ∼=

⊕
Φα:∆n→Xn

Zα

Definición 2.2 (Borde Celular)

Definimos el n-ésimo operador borde celular

dn : C CW

n (X) → C CW

n−1(X)

como la composición

Hn(X
n, Xn−1)

∂∗−→ Hn−1(X
n−1)

j∗−→ Hn−1(X
n−1, Xn−2),

es decir,
dn[Φα] := [∂Φα].
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Proposición 2.1

dn ◦dn+1 = 0.

Definición 2.3 (Grupos de Homoloǵıa Celular)

H CW

n (X) := Ker dn / Imdn+1 .

Teorema 2.1

Existe un isomorfimso natural

λ : H CW

n (X) → Hn(X).
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2.3 Un ejemplo

Ejemplo 3.1 (La Homoloǵıa del Toro)

Dotamos a T = S1 × S1 de la estructura de CW -complejo
mostrada en la imagen:
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Tenemos las cadenas celulares

Z d2−→ Z⊕ Z d1−→ Z → 0.

Como di = 0 (como podemos comprobar usando teoŕıa del grado),
tenemos que la Homoloǵıa Celular (y por tanto Singular) coincide
con las cadenas celulares, esto es H0(T ) ∼= H2(T ) ∼= Z,
H1(T ) ∼= Z⊕ Z.
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3. Aplicaciones
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3.1 La caracteŕıstica de Euler-Poincaré

Definición 1.1 (Caracteŕıstica de Euler Poincaré)

Sea X un CW -complejo con finitas células, esto es, compacto.
Definimos su caracteŕıstica de Euler-Poincaré como la suma
alternada

X (X) :=
∑
i

(−1)iαi,

siendo αi el número de i-células.

Ejemplo 1.1

La esfera Sn con la estructura de CW -complejo de una 0-célula y
una n-célula tiene caracteŕıstica

X (Sn) = 1 + (−1)n.
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Definición 1.2 (Números de Betti)

Sea X un CW -complejo compacto. Denotamos por βn < ∞, el
n-ésimo número de Betti de X, como el rango del grupo abeliano
finitamente generado Hn(X).

Teorema 1.1

Sea X un CW -complejo compacto, tenemos

X (X) =
∑
i

(−1)iβi.

En particular, la caracteŕıstica de Euler-Poincaré es un invariante
por el Tipo de Homotoṕıa.
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por el Tipo de Homotoṕıa.
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En el caso particular de S2, obtenemos el invariante algebraico más
antiguo, la caracteŕıstica de Euler:

V −A+ C = X (S2) = 2.
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3.2 Otros teoremas clásicos

La Homoloǵıa es una herramienta muy potente y con ella se
pueden demostrar los siguientes Teoremas (entre otros):

Teorema del punto fijo de Brouwer.

Teorema de la curva de Jordan.

S2n no admite campos tangentes nunca nulos.

Teorema de Borsuk-Ulam.
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¡Muchas gracias!

¿Alguna pregunta?
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